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Abstract on Poisson brackets, derivation of the equations of mo-
gon for the moments is purely mechanical and is ideally

Using the Hamiltonian structure of the Vlasov equation, w ited 1o the application of svmbolic manioulation. In this
develop a general, relativistic, three-dimensional model ot pp . y anipt '
roach, one approximates the Hamiltonian and bracket

beam transport based on phase space moments of the b%@rms of moments and then uses Hamilton’s equations
particle distribution. Evolution equations for these mo- d

. . . {0, obtain equations of motion. Not only is this procedure
ments are derived from the non-canonical Poisson bracket . . : .
€ss cumbersome than directly averaging the single particle

for the Vlasov equation. In this model, the beam cen- . . - e L
troid experiences the full non-linear forces in the syste quations, it also eliminates the difficulty of determining
In a more lessad hocfashion) a consistent ordering of

while the higher order moments are coupled to both th . . . .
e moment expansion. As is common in this type of re-

centroid and to various spatial derivatives of the applie ction. one finds that even when the external forces are
fields. For example, when moments up to second ordera] getion, .

. . L ...~ linearized, for the model to conserve energy (and typically
retained, the physics content is similar to considering lin-

earized forces. Given the large number of equations (thecr)éher mvanants_also, i tr_1ey e>_<|st) itis necessary that t_he
olution equations retain various terms that are nonlin-

are 27 equations when all second order moments are kegé . . .
q r in the moments. When the equations are derived from

and their algebraic complexity, the use of symbolic comé Poisson bracket and Hamiltonian these nonlinear terms
putation in the derivation was critical to ensuring the cor- . .

. : automatically appear as needed. Moment representations
rectness of the equations. This approach also allows for

. e . . . are intrinsically statistical in nature and are not suscepti-
analytical verification of conservation laws associated W|t§ y P

the model. The initial investigations [1] have considere le to (nor sensmv_e to) noise assouateq with finite part|-_
Cle affects. Terms in the moments equations have two ori-

only externally applied fields, however in principle spaceg ins: kinematic termd.g.,those terms associated with the

charge forces can also be included. We discuss the nec%r%_e-streamin of phase space) and terms associated with
sary extensions to the basic theory needed to model ioniz gotp P

tion cooling for the muon collider[2]. éa‘ectromagnetlc forces. It turns ou_t th<=T that the !<|nemat|c
terms have the form of an expansion in the reciprocal of

the centroidy-factor while the electromagnetic forces are

1 INTRODUCTION essentially Taylor expanded about the centroid location to

Using moments to construct reduced models of phase spati Order that depends on the order of the moments being
dynamics is not a new idea; for example, see Refs. [3, Ji?tamed. _Typlcally one_flnds that t_he moment equations do
for a linac application and Ref. [5] for general approach tdot cIose_;.e., the equations o_f motion for a_set of moments
Hamiltonian field theories. The desire such models is cled?f @ particular order tend to include couplings to moments
Tracking individual particles is computationally very inten-Of higher order. There are numerous methods for imposing
sive (if reasonable statistics are to be obtained) and in mafflosure. The observationthat the moment modelis a com-
instances the detailed information that tracking produces Rnation of an asymptotic expansionr " and a Taylor

not of great interest. Furthermore, often the beam dynarfiXPansion of the applied forces means that for even mildly
ics is largely linear so representing the bulk of the beafflativistic beams{ ~ 2) and for forces that do notvary to
by particles is inefficient. One-dimensional moment equad_rastlcally over the extent of the peam, simple truncatllon is
tions are of significant pedagogical interest as they provic_féreasonably accurate closure. Itis alsq the_case that impos-
a simple means for understanding a variety of elementafjd & closure may Wel! destroy the Hamiltonian structure of
beam dynamics. While such models are of little use in ddl® moment system (in the sense that the bracket typically
tailed studies of beam transport, there still exists the po8© longer satisfies the Jacobi identity). While philosophi-

sibility of extracting much of the beam behaviour withoutc@lly 0ne might prefer an approximation that fully retains
resorting to tracking individual particles. the Hamiltonian character of the underlying dynamics, this

Here we present a formalism for a general, fully re|_loss_ (_joes not _Iessen the power of the bracket approach to
ativistic, three-dimensional moment description of bearf{€rving equations of motion.
transport based upon the noncanonical Hamiltonian struc-

ture of the Vlasov-Poisson equation [6]. This approachhas) HAMILTONIAN FORMULATION OF
many attractive features. By using a formulation based THE VLASOV EQUATION
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fects), although more general models are possible. In thisake the formal identificatidiVy = V¢ + (1/c)0A /0t,
case, the beam dynamics are governed by the relativisand write (10) as
Vlasov equation wittexternalfields:

of

o whereH is obtained fromH by the replacement — .
where f is the phase-space particle density,and m  The chainrule can then be used to obtain the time derivative
are the particle mass and charge, respectivelygnd=  of any functional off:
0/0p. Writing the particle phase-space distribution func- JF
tion in terms of theeanonicaimomentumy, the relativistic R /d3r p
Vlasov equation can be written as [6]:

of
foH (11)
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ot
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3 MOMENT EQUATIONS

Our moment models are based on an expansion of the phase
space coordinates about the location of the beam centroid:

3 = (35) + 035, (13)

where{3;}°_, = {z,y, 2, pz, py, p-} and(-) is the nor-
malized phase-space average. To simplify the presentation,

where the Hamiltonia®f is given by:

H= /d3r d*p (yme® + ¢) f(xr,p). ©)

The (noncanonical) Poisson bracket - } of any function-
als F' andG of f is given by

_ §F G we keep moments only up to second order, but it is clear
{F.,G}= /d rd’p f [W ; ﬁ] (4)  that these procedures can be carried out to arbitrary order.
We define
where[ -, -] is the usual phase-space Poisson bracket:
[ ] Mz' = <3z> and Mz] = <531 53]> (14)
[F,G]=VF-V,G-VG -V, F. (5)

The first order moments\/;, represent the beam centroid,
v¥h|le the second-order momenty,;, represent the phase-
Space extent of the beam. _

Substituting (13) into the expression far and keeping
terms through second orderdp;, we obtain a Hamiltonian
for the moment system:

For the purposes of studying charged-particle optics, |
is more convenient to expregsin terms of the mechan-
ical momentump = p — ¢/cA, whereA is the vector
potential. Under this coordinate transformation

9 _, 9 _q0A 6) = mc?
ot ot ¢ ot P H = fo(vomc®+q¢) — fo 2 [<5pi> (p2)?
0
v, — V,, )
' 9 + (692) (py)2 + (692) (p2)2 + 2(8p. 6py) (pa) (y)
vV V——VAkapk 8)

2(6p.60:) (52) (02) + 2000, 0.} () 0
Applying this change of variables to the brackets gives,

mc2
— (((602) + (ow3) + (502

§F 8G
{F,G}=/d3rd3pf[§,ﬂ
(622) OE,  (6y?) OB, (62°) OE,
/d3rd3 fB- V(Sf Vp§, ) _foq[ > 0r 2 oy 2 0

+ (6x by) 0F, + (bx 6z)

o0F, O0E,
where[-, -] is given by (5) withp replaced byp and 92 + {0y bz) —— P ] (15)

we will subsequently suppress this subscript. The Vlasov

. 1/2
equation now reads whereyy = [1+ ((ps)2 + (py)? + (p2)?)/(m?c?)] / ,
o7 8A fo = [@rd®p f, and all external fields are evaluated at
- T2 g f={f, H} (10) the centroid position.
C

Since moments are clearly functionalsfof(12) and (9)

Upon close examination of (10), we see thal /c)0A /ot give the necessary equations of motion. In evaluating (9),
enters the eXpreSSiqn fﬁrf/é)%t in exactly the same way as 1In general this is equation is not solvable farthe solvability condi-
doesV ¢. The following trick is useful (but not necessary):tion is 9B /dt = 0.




note that for a functional of that can be written asfanc- 5 CONCLUSIONS

tion of the moments aloné.e., F[f] = F(M;, M;;), we . .
Lf] (M, Mig) We have presented a formalism for constructing models of

have : :

beam dynamics based upon moments of arbitrary order. It

SF oF 5M; oF 5M;; is also possible to construct “semi-discrete” models; for ex-
— = -+ : ample, by averaging only over the transverse phase space,

of oM; 6f  OM,;; o6f . ;
R R one obtains a system where the transverse dynamics are de-
_OF 1 - n oF 1 (16) termined by moments while a full kinetic description is re-
OM; fo 3 OM;; fo 3i ;- tained longitudinally. One can also envision constructing a

6 f method using a moment formalism to represent the core
Combining the above we can write the equations of motioof a beam. Such a method could yield important kinetic
for the moments: information (say for studies of halo formation) without the
_ N _ R computational burden of using particles to model the beam
M; = {MZ- , H} and M;; = {Mij , H } . (17) core. As an application of moment methods, we have stud-
ied an ionization cooling channel for the muon collider and
While evaluating (17) is conceptually straightforwardNave found close agreement between our simulation and
these equations are both numerous (there a total of 27 nfdll particle tracking, verifying the utility of moments mod-
ments through second order) and algebraically very corfilS @s design tools. Here we have closed the system by dis-
plex. To overcome this complexity and to ensure th&arding _h|ghgr-order moments, however, othgr clolsures are
correctness of the resulting equations, we have impl@qually justified: for example, one can, by ignoring cor-
mented (9), (12), and (16) using symbolic algebra. In ad€lations, approximate the higher moments using prqducts
dition to deriving the equations, our symbolic algebra pro@f lower order moments. Understanding how the choice of
gram also produces the necessary source code for the §lfsure affects the accuracy of the model will be the subject
merical implementation of these equations. This approad future work.
not only increases our confidence that the final simula-
tion code is correct but also enables symbolic identification 6 ACKNOWLEDGEMENTS
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